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This study investigated the potential of Fourier-transform infrared (FT-IR) spectroscopy and chemo-

metric techniques to produce a mathematical model that would confirm or refute the provenance of

honeys claiming to be Corsican. Authentic honey samples from two harvest seasons (2004/2005

and 2005/2006) were collected from Ireland (n = 2), Italy (n = 30), Austria (n = 40), Germany (n =

36), mainland France (n = 46), and Corsica (n = 219). Prior to scanning, samples were diluted with

distilled water to a standard solids content (70� Brix). Spectra (2500-12500 nm) were recorded at

room temperature using a FT-IR spectrometer equipped with a germanium attenuated total

reflectance (ATR) accessory. Standard normal variate (SNV) and first- and second-derivative data

pretreatments were applied to the recorded spectra, which were processed using factorial discrimin-

ant analysis (FDA) and partial least-squares (PLS) regression analysis. Overall correct classification

figures of 82% (FDA) and 87% (PLS) were obtained for a separate validation set comprising

samples from both harvests.
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INTRODUCTION

Humans have been consuming honey for many thousands of
years; it has been valued as a product in its own right as well as
being used extensively in baking and confectionary products (1).
As a much sought after and exploited product, honey has specific
quality standards, which are set out in the internationally recog-
nizedCodex Standard for honey (2). In addition to these chemical
and physical specifications, there is also, in the minds of con-
sumers, a perceived link between the quality of a honey and its
provenance (3). Such a link has price implications for honey, and
country of origin labeling on retail honey packs is therefore
mandatory in many places, including the European Union (4),
Australia (5), and Canada (6). A protected designation of origin
(PDO) for agricultural products and feedstuffs in the European
Union may be applied to honeys that meet certain defined re-
quirements including characteristics or qualities arising from a
particular geographic origin (7). Corsican honey is an example of
a honey that has been granted a PDO designation. Any honey
with such a designation (Miel de Corse/Mele di Corsica) must
fulfill certain specific criteria; that is, it must have been collected
and separated on the island of Corsica and be the product of the
Corsican ecotype Apis mellifera L. from spontaneous vegetative
associations of the area (8).

It is clear that an independent testing method is necessary to
confirm honey provenance claims to enforce legal requirements
and for confirmation of PDO designation. Traditionally, pollen
analysis (melissopalynology) has been used for these purposes,
and this technique is considered to be the reference method (9).
Determination of geographic origin by this method is based on
the quantities and types of pollen present in a sample being con-
sistent with the flora of a particular region and with any reference
data or descriptions in the literature (10). Analyses of phenolic
compounds and flavonoids have also shown promise for geo-
graphic origin determination (11). Trace element concentration,
measured by atomic absorption and emission spectrophotometry
or neutron activation, may be correlated with the trace element
signature of a particular environment by multivariate analysis,
and such an approach has previously been used for geographic
origin confirmation (12-15) as has chemometric analysis of
NMR spectral data (16, 17). Although these methods have been
successful to greater or lesser degrees, they are time-consuming
and require considerable sample preparation.

An alternative to thesemethods is the use of Fourier-transform
infrared (FT-IR) spectroscopy and chemometrics. FT-IR spec-
troscopy is a rapid technique requiring little or no sample pre-
paration as a result of recent advances in sample presentation
methods (18). Discrimination between honeys from different
parts of Europe and South America using NIR and FT-IR
spectroscopy has previously been reported (19, 20), and FT-IR
spectroscopy has been used in studies distinguishing honeys on
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the basis of their floral origin (21, 22), which can be related to
geographic origin (22).

The objective of this study was to create an FT-IR spectral
library of authentic Corsican samples collected over two harvests
and develop a mathematical model to describe them; this model
was then to be applied to honey samples claiming Corsican or
non-Corsican provenance to estimate its predictive success, that
is, to investigate the possibility of developing a spectral specifica-
tion for Corsican honey.

MATERIALS AND METHODS

Samples. Authentic honey samples (n= 373) were collected over two
harvest seasons (2004/2005 and 2005/2006). The 2004/2005 harvest con-
sisted of honeys fromCorsica (n=111), Italy (n=15), Ireland (n=2),
Austria (n = 18), Germany (n = 18), and mainland France (n = 18),
whereas the 2005/2006 harvest comprised samples fromCorsica (n=108),
Italy (n=15), Austria (n=22), Germany (n=18), andmainlandFrance
(n = 28).

After collection and prior to analysis, sampleswere stored in the dark at
room temperature (21 ( 5 �C) in screw-capped glass or plastic jars.
Spectral collection tookplace over two 14day periods, one in 2005 and one
in 2006. Prior to spectral collection, samples were incubated in an air-oven
at 45 �C overnight to dissolve any crystalline material and subsequently
manually stirred to ensure homogeneity. The solids content of each sample
was measured using an Abbé model 2WA (Kernco Instruments, El Paso,
TX) benchtop refractometer and adjusted to a standard solids content
(70 ( 1 �Brix) using distilled water; this step was necessary to minimize
spectral complications from naturally occurring variations in sugar con-
centration and to avoid spurious classification on the basis of variations in
solids content between honeys. Samples were removed from the air-oven
and left to equilibrate to room temperature for approximately 1 h before
spectral measurement.

Instrumentation. Spectrawere collected on aBio-RadExcalibur series
FTS 3000 FT-IR spectrometer (Analytica Ltd., Dublin, Ireland); samples
were in randomorder. Instrument control and spectral collectionwere per-
formed using WIN-IR Pro (v. 3.0) software. Brix-adjusted samples were
applied to an in-compartment benchmark attenuated total reflectance
(ATR) trough plate using a 45� germanium crystal with 11 internal
reflections (Specac Ltd., Kent, U.K.) so as to obtain a maximum
absorption of approximately 0.3 at the highest peak, which occurred at
approximately 1042 cm-1/9597 nm; this target value was achieved by
varying the coverage of the crystal by the samples using a glass rod. Sixty-
four scans were co-added for each sample at a nominal resolution of
4 cm-1. A single-beam spectrum of each sample was collected and ratioed
against a background of air. Spectra were truncated to 800-4000 cm-1

and then converted to a wavelength scale (2500-12500 nm) usingWin-IR
Pro software.

Between samples, the ATR crystal surface was cleaned with Triton
X-100 solution (1% w/w), rinsed with distilled water, and dried with soft
tissue. The spectral baseline recorded by the spectrometer was examined
visually to ensure that no residue from the previous samplewas retainedon
the crystal. All spectra were recorded at a controlled temperature (21 (
5 �C) but without any nitrogen purge of the sample compartment.

Statistical Analysis.Means of the 64 co-added scans for each sam-
ple were used for statistical analysis. Spectra were exported fromWIN-
IR Pro as GRAMS files (Thermo Galactic, Salem, NH) and imported
directly into The Unscrambler (v9.7; CAMO A/S, Oslo, Norway).
Principal component analysis (PCA) (23) was performed using The Un-
scrambler on the entire sample set for preliminary data set examination.
Data pretreatments examined in subsequent operations were standard
normal variate (SNV) (24 ) and first and second derivatives using a
quadratic Savitzky-Golay (25 ) filter and segment sizes between 5 and
21 points.

In all chemometric operations, separate calibration and validation
sample sets were used. Calibration sets contained an equal number of
Corsican and non-Corsican samples so as to minimize the likelihood of
any class bias in the models developed. Corsican samples were selected at
random, and an equal number of non-Corsican samples was randomly
chosen from each of the other countries. Validation sets consisted of all
samples not included in the calibration sets.

Factorial discriminant analysis (FDA) was executed using the SAI-
SIR (26) environment for MATLAB. Data files from The Unscrambler
were exported as MATLAB files and imported directly into MATLAB
(v7.2.3.232 (R2006a), The Mathworks Inc., Cambridge, U.K.). FDA was
applied in two steps; first, a PCA was carried out on the spectra, and then
FDA was performed on the principal component (PC) scores. The first
step creates a set of orthogonal spectral patterns or principal components,
and the second step calculates discriminant factors using a stepwise
procedure to identify and incorporate those principal components that
best discriminate the samples into the relevant groups, in this case country
of origin (27). The key feature of this technique is that the principal
components are incorporated into the discriminantmodel in such a way as
to maximize discriminant ability according to the characteristic of interest
rather than in numerical order, PC1 alone, PC1þ PC2, etc. Each sample is
assigned to one of the classes of interest; in this study there were two
classes, that is, honeys from Corsica and all other honeys.

Partial least-squares discriminant analysis (PLS1-DA), an adaptation
of PLS regression that allows it to be used for classification (28), optimized
by leave-one-out cross-validation was used to discriminate between the
honey samples from Corsica and all other regions. Separate dummy
variables were generated for each class; a sample was assigned a value of
0 if itwas fromCorsica and 1 if itwas not. PLSmodels thus developedwere
used to predict the value of theY variable for each validation sample; given
the values of the dummy Y variables used, an empirical and not entirely
arbitrary value of 0.5 was used as a cutoff for identity confirmation of
honeys with predicted Y values of <0.5 deemed to be from Corsica. The
outcome of these classifications was expressed as the percentage of correct
classifications of each sample class.

RESULTS AND DISCUSSION

As a precursor to chemometric analysis, the spectra of all
samples (n=373) were plotted. Visual inspection of the resulting
plot (Figure 1) did not reveal any usual samples or allow the
identification of samples from Corsica.

PCA. PCA was preformed on raw spectral data from both
harvests over the full wavelength range recorded (2500-12500
nm) and the resulting scores plot examined. Separation on the
basis of harvest season was readily apparent from a plot PC1 and
PC3, which accounted for 61 and 10% of the total variance in the
spectral data set, respectively.Apart fromdamagebydiseases and
pests, the main cause of year-to-year variation in nectar flows
fromplants is weather; this variation in nectar flowwill in turn af-
fect the composition of honey (29). Samples fromCorsica showed
some evidence of forming a cluster in higher order PCs (results
not shown), although such clusters were not visibly separate from
the other samples in score space.

Figure 1. ATR spectra of randomly selected honey samples from different
countries and both harvest seasons.
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A second PCA was performed on spectra over the attenuated
wavelength range from 6800 to 11500 nm as this range contains
information on sugar composition andwas previously reported to
be useful in discriminating honey from different origins (19). As
with the full wavelength range, the scores plot primarily showed
clustering on the basis of harvest season; some small degree of
separation between Corsican and other samples was suggested in
the hyperplane described by PC1 and PC6 (Figure 2).

FDA. A number of strategies were employed in the develop-
ment of factorial discriminant models to this honey data set. In
the first instance, FDA was separately applied to samples from
each harvest; models thus developed were then used to predict the
provenance of honeys in the validation sample set from the same
harvest. This approach avoids any interference arising from ef-
fects due to harvest season, effects previously demonstrated by
PCA on this data set. Results of this approach can be seen in
Table 1. For the 2004/2005 harvest, correct classification rates for
Corsican samples were in the range from 62 to 94%, and correct
classification rates for non-Corsican samples were between 61
and 91%depending on the pretreatment and variables used in the

model. In general, using thewavelength range 6800-11500 nmre-
sulted in similar or improved correct classification rates as com-
pared to models developed using the 2500-12500 nm range;
average values were increased by at least 4%. Results for the
2005/2006 harvest show that Corsican correct classification rates
tended to be lower than the corresponding non-Corsican rates.
Corsican samples had correct classifications of 55-77%,whereas
64-93% of non-Corsican samples were correctly classified. Use
of the attenuated rather than the full wavelength range did not
showany consistent effect on results for this harvest.Average cor-
rect classifications for Corsican samples increased and remained
the same for non-Corsican samples when the attenuated rather
than the full wavelength range was used. Results show that the
FDAmodels developed using samples from a single harvest have
correct classification rates of approximately 80%when applied to
validation sets from the same harvest.

Single-harvest models from 2004/2005 data were applied to all
samples from the second harvest, and results were variable. De-
pending on the pretreatment used, when correct classification
rates for Corsican samples were high, non-Corsican samples had
low correct classification rates and vice versa, or else correct
classifications for both classes were between 50 and 70%. A simi-
lar, varied result was found when 2005/2006 models were applied
to 2004/2005 samples. These results imply that for this data set,
FDA models from one harvest cannot be used to satisfactorily
confirm the provenance of samples from another harvest.

Spectral data from both harvests were then combined and
analyzed together; results are shown in Table 2. Pretreatments
yielding the best results were first derivative with a 21 data point
gap and SNV. This was the case for models developed using
spectral data in the wavelength ranges 2500-12500 and 6800-
11500 nm. First-derivative data pretreatments tended gave better
results than second-derivative pretreatments. The highest Corsi-
can and non-Corsican correct classification rates for this com-
bined data set were 79 and 88%, respectively. The rank order of
PCs for inclusion in this model (first derivative, 21 point gap,
2500-12500 nm wavelength range) was 5, 8, 9, 11, 4, 10, 16, 17,
13, and 20. It is noteworthy that PC1, PC2, and PC3, which
together accounted for 66% of the data set variance, were not
selected for this FDAmodel. This arises in part because the main
source of variance in the data arose from harvest year, a feature

Figure 2. Scores plot of all samples after principal component analysis of
raw spectral data in the wavelength range 6800-11500 nm (PC1 versus
PC6).

Table 1. Factorial Discriminant Analysis Model Performances on Honeys from Individual Harvests

2004/2005 harvest

calibration set: Corsican = 48, non-Corsican = 48

validation set: Corsican = 63, non-Corsican = 23

2005/2006 harvest

calibration set: Corsican = 55, non-Corsican = 55

validation set: Corsican = 53, non-Corsican = 28

2500-12500 nm

% correct classification

6800-11500 nm

% correct classification

2500-12500 nm

% correct classification

6800-11500 nm

% correct classification

pretreatment PCsa Corsican non-Corsican PCsa Corsican non-Corsican PCsa Corsican non-Corsican PCsa Corsican non-Corsican

none 7 79 74 10 78 91 10 75 86 8 77 89

1st derivative

5 point gap 10 83 83 8 86 87 7 70 86 10 66 86

9 point gap 10 89 74 10 87 87 8 74 86 8 68 86

13 point gap 10 84 83 6 94 83 10 68 89 9 75 86

21 point gap 7 89 83 7 90 83 8 70 89 9 77 82

2nd derivative

5 point gap 9 62 61 9 81 70 10 55 64 7 58 75

9 point gap 10 83 78 10 90 78 5 58 71 7 66 89

13 point gap 10 84 83 6 90 74 6 64 89 6 70 86

21 point gap 9 90 87 6 83 87 9 64 86 10 74 86

SNV 7 79 70 10 84 91 10 75 93 10 75 79

av 82 78 86 83 67 84 71 84

aNumber of principal components in the model.
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that is not relevant for classification on the basis of geographic
origin. The predominance of higher order PCs may be explained
on the basis that the differences between honeys from the regions
sampled may be expected to be small in terms of both molecular
composition and proportionality; such small compositional ef-
fects will be extracted only in higher order PCs.

The spectral pattern of the discriminant factor for this best
model was examined to try to identify wavelengths that con-
tributed to the two-class discrimination. The first spectral feature
of note is a maximum at 3049 nm, which is likely to arise from
O-H stretching vibrations. A minimum at 6020 nm and a maxi-
mum at 6334 nm may correspond to the H-O-H stretching
vibration, which occurs at approximately 6060 nm in a typical
FT-IR spectrum of honey (19, 30). Many of the other spectral
features present correspond to molecular vibrations associated
with saccharides (22). A prominent maximum at 8598 nm and a
minimum around 8773 nm may be attributed to molecular
vibrations arising from C-O and C-C stretching (31), whereas

a minimum at 11654 nm may correspond to a C-H bending
vibration (32). This examination suggests that absorption due to
water may have played a role in discrimination of samples despite
the dilution of all samples to 70 �Brix; the instrument used was
accurate to only (1 �Brix. The attenuated wavelength range ex-
amined does not include the water absorption regions, and classi-
fications based on both wavelength ranges did not differ greatly,
so it is unlikely that any small variation of water content had a
large impact on the models. The appearance of water as a signi-
ficant factormay relate to slight changes in its absorbance pattern
arising from small differences in content of specific saccharide
and other honey components. It should be borne in mind that
attribution of these spectral features is difficult by virtue of the
chemometric approach used and further complicated by the use
of first-derivative spectral data in the model (33); any inferences
drawn are therefore tentative.

PLS1-DA. Spectra were analyzed by PLS1-DA in a number of
ways, similar to the approaches described above for FDA; samp-
les from the first harvest season (2004/2005) were analyzed on
their own, as were the samples from the second harvest season
(2005/2006). Samples from one harvest were used to predict the
identity of samples from the other harvest, and finally the two sets
were combined and analyzed together. Two wavelength ranges,
the entire recorded range (2500-12500 nm) and an attenuated
range (6800 - 11500 nm), were examined.

Table 3 outlines the performance of PLS1-DA models on
spectral honey data and on data with first- and second-derivative
and SNV pretreatments from the individual harvest seasons.
The best performing model for the 2004/2005 harvest correctly
classified 90% of the Corsican samples and 91% of the non-
Corsican samples. This model was developed using attenuated
spectra with a second-derivative pretreatment (13 data point gap,
number of PLS loadings = 6), although the results do not vary
greatly with wavelength range or pretreatment used. Models for
the 2005/2006 harvest donot performaswell as their counterparts
from the previous harvest season with correct classifications of
between 57 and 79% for Corsican samples and 64 and 89% for
non-Corsican samples. Use of the attenuated range improved
results for some pretreatments, whereas using the entire spectral
range produced better results for other pretreatments. For both
harvests, correct classification rates of between 70 and 90% show

Table 2. FDA Model Performances Using Samples from Both Harvests

calibration set: Corsican = 103, non-Corsican = 103

validation set: Corsican = 116, non-Corsican = 51

2500-12500 nm

% correct classification

6800-11500 nm

% correct classification

pretreatment PCsa Corsican non-Corsican PCsa Corsican non-Corsican

none 8 78 80 10 78 86

1st derivative

5 point gap 10 72 84 7 78 90

9 point gap 7 75 80 4 78 84

13 point gap 8 76 88 9 80 84

21 point gap 10 79 88 10 80 86

2nd derivative

5 point gap 8 60 63 9 72 80

9 point gap 10 60 65 10 78 78

13 point gap 10 71 80 8 80 80

21 point gap 10 72 86 8 83 78

SNV 10 78 88 10 77 86

av 72 80 78 83

aNumber of principal components in the model.

Table 3. PLS1-DA Prediction on All Honeys from Individual Harvests

2004/2005 harvest

calibration set: Corsican = 48, non-Corsican = 48

validation set: Corsican = 63, non-Corsican = 23

2005/2006 harvest

calibration set: Corsican = 55, non-Corsican = 55

validation set: Corsican = 53, non-Corsican = 28

2500-12500 nm

% correct classification

6800-11500 nm

% correct classification

2500-12500 nm

% correct classification

6800-11500 nm

% correct classification

pretreatment La Corsican non-Corsican La Corsican non-Corsican La Corsican non-Corsican La Corsican non-Corsican

none 11 79 78 10 83 87 6 79 89 3 70 79

1st derivative

5 point gap 7 83 83 8 89 91 5 70 86 7 70 89

9 point gap 9 86 91 7 89 91 5 74 86 6 72 86

13 point gap 7 87 91 8 89 87 5 74 89 5 72 82

21 point gap 6 86 91 3 76 78 3 68 86 5 74 79

2nd derivative

5 point gap 7 70 61 5 83 74 2 60 64 3 55 82

9 point gap 7 76 78 5 84 83 3 57 75 4 62 82

13 point gap 8 84 87 6 90 91 6 66 89 5 66 82

21 point gap 8 84 87 7 92 83 6 72 89 2 62 71

SNV 11 87 91 11 76 91 4 77 86 2 64 79

av 82 84 85 86 70 84 67 81

aNumber of PLS loadings in the model.
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that the PLS models have the potential to distinguish between
Corsican and non-Corsican samples within the same harvest with
an accuracy level that may be commercially useful.

A further test applied to the above models was to use them to
predict the provenance of samples from the other harvest.Aswith
FDA, depending on the pretreatment applied, models produced
high correct classification rates for Corsican samples with low
correct classification rates for non-Corsican samples and vice
versa, although themodels developed using variables 2500-12500
nm with no pretreatment or SNV pretreatment produced better
results.

It is unrealistic to assume that Corsican samples from a
particular harvest could represent all past and future samples
fromCorsica.New discriminantmodels were developed using the
previously employed calibration samples from each harvest.
Validation results for these models can be seen in Table 4. Cor-
sican samples had correct classifications of 68-85%, whereas
non-Corsican samples generally had higher correct classifications
ranging from 75 to 92%. The best performing model involved a
second-derivative (13 data point gap, PLS loadings= 7) pre-
treatment and was developed using the wavelength range 2500-
12500 nm.

The regression coefficients of thismodel were examined and, as
with the discriminant profile for FDA, definitive spectral attribu-
tions cannot bemade as a derivative, spectral pretreatment, in this
case second, has been used in model development. In addition,
spectral interpretation of regression functions is generally of
limited value. As before, features associated with water absorp-
tionwavelengthswere observed; aminimumobserved at 3116 nm
may arise fromO-H stretching, and the twomaxima at 6099 and
6286 nm may correspond to H-O-H stretching (30). There
appears to be an important feature at 8695 nm, and this most
likely corresponds to C-O and C-C stretching, which is found
at approximately 8696 nm in the mid-infrared spectrum of
honey (31). It is notable that the most significant wavelengths
in the regression coefficient are similar to the most significant
wavelengths in the FDA discriminant profile.

Themost successfulmodel correctly classified 85%ofCorsican
samples and 92% of non-Corsican samples, equivalent to an
overall correct classification rate of 87% for the validation set.
Although this result may not be sufficiently accurate as a de-
finitive test of provenance, it clearly demonstrates that FT-IR

spectroscopy has the potential to be used as a rapid screening
technique, at least in this application. Honey samples used in this
work have also been analyzed usingNIR spectroscopy and PLS1-
DA (34); results from this study compare favorably.

The analyses of collected spectra by factorial discriminant
analysis and partial least-squares discriminant analysis both
showed that within one harvest season, approximately 80% of
validation samples could be correctly classified into either of the
two classes of interest, that is, honey claiming to have a Corsican
provenance and honey not claiming to be from Corsica. Models
developed using samples from one harvest applied to samples
from another harvest were not as successful in distinguishing
between the two classes. When samples from the two harvests
were combined, FDA correctly identified between 70 and 80% of
samples according to their claimed origin. The PLS1-DAmodels
performed slightly better, with between 80 and 90% of samples
being correctly identified.

This study shows the FT-IR spectroscopy and chemometric
modeling of the resulting spectra have potential for confirming
the claimed provenance of authentic honey samples from the
PDO region of Corsica. The largest variation in the data was due
to the harvest season to which the honey belonged, and results
were better when samples fromboth harvests were included in the
calibration and validation models. The intention was not to
develop a model that would identify the geographic origin of an
unknown honey sample; such a model would require an exhaus-
tive sampling of world honeys over several harvest years and
would not be easily realizable even if it was judged worth at-
tempting. Rather, the goal was to compare spectra of honeys
claiming to be from Corsica to the model developed and thereby
arrive at a decision confirming this provenance or not. It is
recognized that Corsican honey may not have a unique spectral
signature and that honeys from other countries or localities
around the world may be spectrally similar due to similarities in
vegetation. However, a successful outcome to the approach
studied would be useful to Corsican honey producers as a quality
assurance tool and by, for example, retailers as a screening tool to
check honey from suppliers with whom they have an established
relationship. It should therefore enhance consumer confidence in
such a product.

Before commercial deployment of this method, the sample
collection would need augmentation with more samples collected
over a larger number of harvests; in thisway the effects ofweather
variations would be incorporated. Parallel studies investigat-
ing the effect of storage time, temperature, and exposure to light
on spectra would also be required for the creation of robust
models.
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